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Abstract
Terrestrial	 ecosystems	 contribute	 most	 of	 the	 interannual	 variability	 (IAV)	 in	
	atmospheric	carbon	dioxide	(CO2)	concentrations,	but	processes	driving	the	IAV	of	
net	ecosystem	CO2	exchange	(NEE)	remain	elusive.	For	a	predictive	understanding	
of	the	global	C	cycle,	it	is	imperative	to	identify	indicators	associated	with	ecological	
processes	that	determine	the	IAV	of	NEE.	Here,	we	decompose	the	annual	NEE	of	
global	terrestrial	ecosystems	into	their	phenological	and	physiological	components,	
namely	maximum	carbon	uptake	(MCU)	and	release	(MCR),	the	carbon	uptake	period	
(CUP),	and	two	parameters,	α and β,	that	describe	the	ratio	between	actual	versus	
hypothetical	maximum	C	 sink	 and	 source,	 respectively.	Using	 long‐term	observed	
NEE	from	66	eddy	covariance	sites	and	global	products	derived	from	FLUXNET	ob‐
servations,	we	found	that	the	IAV	of	NEE	is	determined	predominately	by	MCU	at	the	
global	scale,	which	explains	48%	of	the	IAV	of	NEE	on	average	while	α,	CUP,	β,	and	
MCR	explain	14%,	25%,	2%,	and	8%,	respectively.	These	patterns	differ	in	water‐lim‐
ited	ecosystems	versus	temperature‐	and	radiation‐limited	ecosystems;	31%	of	the	
IAV	of	NEE	is	determined	by	the	IAV	of	CUP	in	water‐limited	ecosystems,	and	60%	of	
the	IAV	of	NEE	is	determined	by	the	IAV	of	MCU	in	temperature‐	and	radiation‐lim‐
ited	ecosystems.	The	Lund‐Potsdam‐Jena	(LPJ)	model	and	the	Multi‐scale	Synthesis	
and	Terrestrial	Model	Inter‐comparison	Project	(MsTMIP)	models	underestimate	the	
contribution	of	MCU	to	the	IAV	of	NEE	by	about	18%	on	average,	and	overestimate	
the	contribution	of	CUP	by	about	25%.	This	study	provides	a	new	perspective	on	the	
proximate	causes	of	the	IAV	of	NEE,	which	suggest	that	capturing	the	variability	of	
MCU	is	critical	for	modeling	the	IAV	of	NEE	across	most	of	the	global	land	surface.
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1  | INTRODUC TION

The	 large	 year‐to‐year	 variation	 in	 the	 growth	 rate	 of	 atmospheric	
carbon	 dioxide	 (CO2)	 is	 due	 primarily	 to	 the	 interannual	 variability	
(IAV)	of	the	terrestrial	carbon	cycle	rather	than	the	oceanic	C	cycle	(Le	
Quéré	et	al.,	2018).	The	causes	for	the	IAV	of	terrestrial	C	cycle	differ	
across	different	global	regions	and	scales	of	observation	(Jung	et	al.,	
2017)	and	models	have	difficulty	replicating	it	(Keenan	et	al.,	2012;	
Niu	et	al.,	2017),	indicating	a	fundamental	gap	in	our	understanding.	
Temperature	 (Wang	 et	 al.,	 2014),	 precipitation	 (Jung	 et	 al.,	 2017;	
Poulter	 et	 al.,	 2014),	 and	 solar	 radiation	 (Ichii,	Hashimoto,	Nemani,	
&	White,	2005;	Nemani	et	al.,	2003)	have	been	reported	as	the	most	
important	climate	 factors	 in	controlling	 the	 IAV	of	 the	 terrestrial	C	
cycle	in	different	ecosystems,	but	the	biological	mechanisms	under‐
lying	the	IAV	of	net	ecosystem	CO2	exchange	(NEE)	at	the	global	scale	
are	far	from	clear.	 It	 is	 imperative	to	identify	the	drivers	associated	
with	underlying	ecological	processes	that	determine	the	IAV	of	NEE	
for	an	improved	predictive	understanding	of	the	global	C	cycle.

The	variation	of	NEE	results	from	the	small	imbalance	between	
two	larger	fluxes:	the	photosynthetic	uptake	of	CO2	(gross	primary	
production,	GPP)	and	the	respiratory	release	of	CO2	 from	autotro‐
phic	and	heterotrophic	processes	(ecosystem	respiration,	ER).	Annual	
GPP	is	easily	decomposed	into	different	processes;	for	example,	90%	
of	its	annual	variability	can	be	explained	by	the	product	of	the	maxi‐
mum	daily	GPP	(GPPmax)	and	growing	season	length	in	temperate	and	
boreal	ecosystems	(Xia	et	al.,	2015;	Zhou	et	al.,	2016).	These	findings	
rely	on	the	notion	that	the	seasonality	of	GPP	follows	a	fundamental	
unifying	pattern	across	different	vegetation	types	and	highlight	the	
important	 role	of	GPPmax	and	growing	season	 length	 in	controlling	
plant	CO2	uptake,	although	it	is	unclear	if	these	indictors	related	to	
plant	C	uptake	emerge	to	be	the	most	 important	controls	over	the	
IAV	of	NEE.	As	 far	as	we	know,	a	decomposition	of	 the	 indicators	
that	contribute	to	annual	global	NEE	has	not	been	studied	to	date,	
especially	in	the	southern	hemisphere	where	biomes	such	as	tropical	
forests,	savanna,	and	Mediterranean	ecosystems	are	dominant.

Extending	the	net	carbon	uptake	period	(CUP)	likely,	but	not	nec‐
essarily,	 leads	 to	 larger	net	C	uptake	 (Churkina,	Schimel,	Braswell,	
&	Xiao,	2005;	Dragoni	et	al.,	2011;	Richardson	et	al.,	2013).	An	in‐
crease	in	the	maximum	net	C	uptake/release	rate	tends	to	stimulate/
reduce	 annual	 net	C	uptake	 as	well	 (Fu,	Dong,	 Zhou,	 Stoy,	&	Niu,	
2017;	Zscheischler	et	al.,	2016).	Changes	in	the	maximum	net	carbon	
uptake/release	and	the	length	of	net	CUP	are	thus	likely	to	co‐con‐
tribute	to	the	variability	in	annual	NEE	(Figure	1).	Unlike	GPPmax and 
growing	season	length	(Xia	et	al.,	2015;	Zhou	et	al.,	2016),	the	max‐
imum	net	 carbon	 uptake/release	 and	 net	CUP	 contain	 the	 signals	
of	both	photosynthesis	and	respiration,	which	more	directly	reflect	
the	net	carbon	uptake	at	the	ecosystem	level.	As	the	maximum	net	
carbon	uptake/release	represents	important	characteristics	of	pho‐
tosynthesis	and	respiration,	it	can	be	used	as	an	indicator	of	physi‐
ology	while	the	net	CUP	can	be	used	as	an	indicator	of	net	C	uptake	
phenology.	These	indicators	represent	different	mechanisms	about	
how	net	carbon	uptake	phenology	and	physiology	regulate	the	IAV	
of	NEE.

Other	indicators	that	are	necessary	to	describe	net	C	uptake	and	
release	include	the	ratio	between	actual	versus	hypothetical	maxi‐
mum	C	sink	during	the	growing	season	and	the	ratio	between	actual	
versus	hypothetical	maximum	C	source	(Figure	1).	These	indicators	
reflect	how	much	C	uptake	and	loss	are	constrained	by	environmen‐
tal	drivers	in	a	given	year,	respectively,	which	also	contribute	to	the	
IAV	of	NEE.	However,	it	is	unclear	how	much	the	IAV	in	NEE	is	at‐
tributed	to	the	changes	in	the	maximum	net	carbon	uptake/release,	
net	CUP	and	the	ratios	of	actual	to	hypothetical	maximum	C	sink	and	
source,	and	what	is	the	relative	importance	of	these	indictors	across	
different	ecosystems	and	climate	zones	globally.	Exploring	the	rela‐
tive	contributions	of	these	indicators	will	elucidate	the	contributions	
of	phenological	and	physiological	changes	to	annual	NEE	variability	
and	 improve	our	understanding	of	 the	 IAV	of	NEE	at	global	 scale.	
Furthermore,	the	distribution	of	their	relative	contributions	may	be	
connected	to	 local	climate	conditions,	such	as	water,	 temperature,	
and	 radiation,	 because	 local	 climate	 conditions	 drive	 the	 seasonal	
dynamics	of	NEE	and	impact	the	indicators	related	to	phenology	and	
physiology	(Chapin	III,	Matson,	&	Vitousek,	2011).	However,	the	ef‐
fects	of	climatic	drivers	in	controlling	the	distribution	of	their	rela‐
tive	contributions	remain	unclear.	We	hypothesize	that	the	relative	
contributions	of	phenological	and	physiological	indicators	to	the	IAV	
of	NEE	may	be	different	among	water‐limited,	temperature‐limited,	
and	radiation‐limited	ecosystems.	Changing	CUP	by	a	few	days	may	
not	considerably	affect	annual	net	C	uptake	in	temperature‐limited	
ecosystems	with	a	single	period	of	C	uptake	per	growing	season	(e.g.,	
boreal	 and	 temperate	ecosystems)	because	net	C	uptake	 strength	
around	the	C	sink/source	transition	days	tends	to	be	small.	However,	
in	water‐limited	ecosystems,	changes	in	CUP—often	due	to	precipi‐
tation	events—may	appreciably	change	annual	C	uptake	(Ahlström	et	
al.,	2015;	Poulter	et	al.,	2014).

To	better	predict	the	IAV	of	terrestrial	NEE	in	a	changing	climate,	
it	is	critical	to	accurately	simulate	the	roles	of	phenological	and	phys‐
iological	indicators	in	controlling	the	IAV	of	NEE.	In	recent	decades,	
land	surface	models	have	incorporated	more	and	more	processes	in	
an	attempt	to	simulate	C	cycle	processes	as	realistically	as	possible	
(Luo	et	al.,	2017;	Oleson	et	al.,	2010),	however,	 it	 is	 far	 from	clear	
whether	land	surface	models	can	capture	the	contributions	of	these	
indictors	 to	 the	 IAV	 of	 NEE	 or	 not.	 Comparing	 results	 calculated	
from	model	outputs	with	observations	 allow	us	 to	 investigate	 the	
performance	of	current	land	surface	models	and	highlight	future	di‐
rections	for	improving	model	predictive	skills.

In	this	study,	we	used	global	databases	of	eddy	covariance	ob‐
servations	at	the	site	scale	and	global	terrestrial	NEE	data	products	
that	 fuse	 eddy	 covariance	 and	 remote‐sensing	 observations	 using	
three	different	machine	learning	techniques,	FLUXCOM	(Jung	et	al.,	
2017),	to	study	how	phenological	and	physiological	indictors	deter‐
mine	the	IAV	of	NEE	in	terrestrial	ecosystems.	We	also	compared	the	
results	calculated	from	FLUXCOM	observations	with	that	of	the	LPJ	
model	and	ensemble	of	Multi‐scale	Synthesis	and	Terrestrial	Model	
Inter‐comparison	Project	(MsTMIP)	models	to	see	whether	the	land	
surface	models	can	capture	the	observed	role	of	phenological	and	
physiological	 indicators	 in	controlling	the	 IAV	of	NEE.	The	specific	
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objectives	are	to	 (a)	characterize	the	global	patterns	of	these	phe‐
nological	and	physiological	indicators;	(b)	partition	their	relative	con‐
tributions	to	the	IAV	of	NEE	across	different	global	ecosystems;	and	
(c)	evaluate	whether	land	surface	models	can	capture	their	relative	
contributions.	To	do	so,	we	decompose	annual	NEE	into	phenolog‐
ical	and	physiological	indictors	that	determine	it,	namely	maximum	
rates	of	net	carbon	uptake	(MCU)	and	release	(MCR),	the	net	uptake	
period	(CUP),	and	two	parameters,	α and β,	 that	describe	the	ratio	
between	actual	versus	hypothetical	maximum	C	sink	and	source,	re‐
spectively	(Figure	1).

2  | MATERIAL S AND METHODS

2.1 | Datasets

Net	 ecosystem	 exchange	 (NEE)	 observations	 from	 eddy	 co‐
variance	data	were	retrieved	from	the	FLUXNET2015	dataset.	

FLUXNET2015	contains	daily	averages	of	CO2,	water	vapor,	and	
energy	fluxes	that	are	harmonized,	standardized,	and	gap‐filled	
(Chu,	Baldocchi,	 John,	Wolf,	&	Reichstein,	2017;	Papale	et	 al.,	
2006;	Reichstein	et	al.,	2005).	Study	sites	were	chosen	accord‐
ing	to	the	following	two	criteria.	(a)	Only	site‐years	with	which	
more	 than	 80%	 of	 the	 NEE	 data	 were	measured	 or	 gap‐filled	
with	high	confidence	(i.e.,	data	marked	as	“the	original”	or	“most	
reliable”	 according	 to	 the	quality	 flag,	were	 selected;	 in	 other	
words,	only	the	site‐years	at	least	292	days	of	high‐quality	flux	
measurements	 or	 estimates	were	 used).	 (b)	 Sites	 with	 a	mini‐
mum	of	5	years	of	observations	were	selected.	A	subset	of	66	
sites	satisfied	the	two	criteria,	among	which	there	were	19	ev‐
ergreen	needleleaf	 forests,	 three	evergreen	broadleaf	 forests,	
11	 deciduous	 broadleaf	 forests,	 five	 mixed	 forests,	 10	 grass‐
lands,	nine	croplands,	 three	sites	with	closed	and	open	shrub‐
lands,	 two	 wetlands,	 and	 four	 sites	 with	 savannas	 or	 woody	
savannas	(Table	S1).

F I G U R E  1  Conceptual	figure	of	α,	maximum	CO2	uptake	(MCU),	CO2	uptake	period	(CUP),	β,	and	maximum	CO2	release	(MCR)	in	
determining	the	changes	in	annual	net	ecosystem	CO2	exchange	(NEE)	(e)	with	examples	of	the	annual	course	of	observed	and	filtered	
NEE	(a–d)	from	different	eddy	covariance	sites	(Table	S1).	α	is	the	ratio	of	actual	carbon	sink	and	hypothetical	maximum	carbon	sink	in	a	
year	defined	as	the	simple	product	of	CUP	×	MCU,	and	β	is	the	ratio	of	actual	carbon	source	and	hypothetical	maximum	carbon	source,	
that	is,	the	length	of	the	calendar	year	minus	CUP,	multiplied	by	MCR.	We	applied	the	Savitzky–Golay	filter	to	minimize	the	role	of	random	
variability	in	flux	observations	(Savitzky	&	Golay,	1964)	and	calculated	α,	MCU,	CUP,	β,	and	MCR	for	each	site	or	grid	(see	Materials	and	
Methods)	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

0 50 100 150 200 250 300 350

Day of year

–5

–4

–3

–2

–1

0

1

2

D
ai

ly
 N

E
E

 (
gC

 m
–2

 d
ay

–1
)

Tropical forest (MY-PSO, 2005)

0 50 100 150 200 250 300 350
Day of year

–6

–4

–2

0

2

4

6

D
ai

ly
 N

E
E

 (
gC

 m
–2

 d
ay

–1
)

Tropical savanna (AU-DaP, 2010)

0 50 100 150 200 250 300 350
Day of year

–8

–6

–4

–2

0

2

4
D

ai
ly

 N
E

E
 (

gC
 m

–2
 d

ay
–1

)
Boreal forest (CA-Oas, 1998)

Observed NEE
Fitted NEE

0 50 100 150 200 250 300 350
Day of year

–6

–4

–2

0

2

4

D
ai

ly
 N

E
E

 (
gC

 m
–2

 d
ay

–1
)

Temperate grassland (US-IB2, 2011)
(a) (b)

(c) (d)

(e)

www.wileyonlinelibrary.com


3384  |     FU et al.

The	 three	 FLUXCOM	 datasets	 are	 built	 with	 three	 machine	
learning	 techniques	 (Random	 Forests,	 Artificial	 Neural	 Networks,	
Multivariate	Adaptive	Regression	Splines)	 to	upscale	 flux	observa‐
tions	from	FLUXNET	in	space	and	time	and	integrate	these	with	cli‐
mate	and	remote‐sensing	data	for	the	period	1980–2013	(Jung	et	al.,	
2011,	2017;	Tramontana	et	al.,	2016).	Global	maps	of	NEE	from	three	
FLUXCOM	datasets	at	0.5°	spatial	resolution	and	daily	temporal	res‐
olution	were	used	individually,	and	then	the	median	was	taken	based	
on	these	three	results	for	analysis.

NEE	 datasets	 from	 Lund‐Potsdam‐Jena	 (LPJ)	 dynamic	 global	
vegetation	model	and	the	MstMIP	outputs	were	also	used	to	eval‐
uate	whether	 land	surface	models	capture	 the	 relative	contribu‐
tions	of	α,	MCU,	CUP,	β,	and	MCR	to	the	IAV	of	NEE.	We	simulated	
the	daily	NEE	from	1980	to	2013	with	a	spatial	resolution	of	0.5°	
using	LPJ	(Sitch	et	al.,	2003)	to	match	with	the	studied	period	of	
the	 FLUXCOM	datasets	 (1980–2013).	 The	MstMIP	 provides	 the	
three	hourly	NEE	over	7	years	(2004–2010)	at	spatial	resolutions	
of	 0.5°	 ×	 0.5°	 (https	://daac.ornl.gov/CMS/guide	s/CMS_CO2_
Fluxes_TBMO.html).	 The	 three	 hourly	 NEE	 were	 derived	 from	
monthly	NEE	outputs	from	the	weighted	ensemble	mean	NEE	 in	
MstMIP	 (the	 15	 MsTMIP	 models	 included:	 BIOME_BGC,	 CLM,	
CLM4VIC,	CLASS_CTEM,	DLEM,	GTEC,	 ISAM,	an	earlier	version	
of	LPJ,	ORCHIDEE,	SIB3,	SIBCASA,	TEM6,	TRIPLEX‐GHG,	VEGAS,	
and	 VISIT;	 Huntzinger	 et	 al.,	 2013;	Wei	 et	 al.,	 2014).	 The	 three	
hourly	NEE	data	were	aggregated	to	daily	totals.

To	 analyze	 the	 role	of	 climatic	drivers	 in	 controlling	 the	distri‐
bution	 of	 relative	 contributions	 in	 the	α,	MCU,	CUP,	β,	 and	MCR,	
global	maps	of	temperature,	water,	and	radiation	constraints	to	plant	
growth	derived	from	long‐term	climate	statistics	were	used	(Nemani	
et	al.,	2003).	The	MODIS	MCD12C1	land‐cover	product	was	used	to	
classify	the	land	pixels	and	to	calculate	statistics	by	IGBP	vegetation	
classes	 (Friedl	&	Brodley,	1997).	MCD12C1	provides	the	dominant	
land‐cover	types	at	a	spatial	resolution	of	0.05°	using	a	supervised	
classification	algorithm	that	 is	calibrated	using	a	database	of	 land‐
cover	 training	sites.	We	remapped	using	a	majority	 filter	 to	a	spa‐
tial	resolution	of	0.5°	 (Figure	S1;	Marcolla,	Rödenbeck,	&	Cescatti,	
2017).

2.2 | Definitions and calculations for α, MCU, CUP, 
β and MCR

We	used	the	daily	NEE	for	each	site	or	grid	to	calculate	α,	MCU,	
CUP,	β,	 and	MCR	 (Figure	1)	 and	 applied	 the	 Savitzky–Golay	 fil‐
ter	to	minimize	the	role	of	random	variability	in	flux	observations	
(Savitzky	&	Golay,	1964).	The	sign	convention	of	NEE	is	from	the	
perspective	of	the	atmosphere	such	that	NEE	is	negative	for	eco‐
system	 C	 uptake	 and	 positive	 for	 C	 release	 to	 the	 atmosphere	
(Figure	1;	Chapin	et	al.,	2006).	We	defined	the	CUP	as	the	num‐
ber	of	days	with	net	C	uptake	 (NEE	<	0	g	C	m−2 day−1,	Figure	1,	
i.e.,	days	during	which	 the	magnitude	of	GPP	 is	 larger	 than	ER).	
Following	 this	 definition,	 there	 may	 be	 multiple	 periods	 across	
the	course	of	a	calendar	year	that	may	have	net	C	uptake;	these	
are	added	for	the	calculation	of	CUP	on	an	annual	basis.	The	MCU	

is	defined	as	the	maximum	value	of	daily	net	C	uptake	of	the	fil‐
tered	time	series	(Figure	1).	α	is	the	ratio	of	actual	carbon	sink	and	
hypothetical	maximum	carbon	sink	in	a	year	defined	as	the	simple	
product	of	CUP	×	MCU,	and	β	is	the	ratio	of	actual	carbon	source	
and	hypothetical	maximum	carbon	source	(Figure	1),	that	 is,	the	
length	 of	 the	 calendar	 year	 (n)	 minus	 CUP,	 multiplied	 by	MCR.	
We	 differentiate	 between	 indicators	 calculated	 from	 the	 eddy	
covariance	databases	 (sites)	and	FLUXCOM	(FLUXCOM)	and	explore	
similarities	between	them.

2.3 | Calculation of the IAV of NEE and relative 
contributions

Annual	NEE	can	be	expressed	as	a	function	of	the	five	indicators	α,	
MCU,	CUP,	β,	and	MCR	(Figure	1):

where n	=	365	or	366	days.	We	used	a	perturbation	analysis	to	sep‐
arate	 the	contributions	of	 the	 five	 indicators	 to	 the	 IAV	of	NEE	and	
test	 the	sensitivity	of	 this	method	against	a	variance	decomposition	
approach	 in	 Supporting	 Information	 (Text	 S1).	 The	 total	 differential	
form	of	annual	NEE	with	respect	to	the	five	indicators	is	as	follows:

where

and	 higher	 order	 terms	 are	 excluded.	 Equation	 (2)	 explains	 more	
than	97%	of	the	variability	of	observed	NEE	across	all	ecosystems	on	
average.

In	practice,	the	differentials	of	annual	NEE	and	of	the	five	in‐
dicators	are	approximated	by	 the	anomalies	 (∆)	of	 the	variables,	
namely,	 the	 differences	 between	 the	 variables	 with	 respect	 to	
their	long‐term	mean	values.	The	annual	NEE	anomaly	is	separated	
into	 five	 independent	 components,	 that	 is,	 �NEE

�α
dα,	 �NEE

�MCU
dMCU,	

�NEE

�CUP
dCUP,	�NEE

�β
dβ,	 �NEE

�MCR
dMCR	representing	the	annual	NEE	change	

induced	 by	 the	 five	 indicators,	 respectively.	 The	 relative	 contri‐
butions	 of	 the	 changes	 in	 the	 five	 indicators	 to	 the	 IAV	 of	NEE	
were	 calculated	 as	 Equation	 (3)	 according	 to	 the	 consistency	 of	

(1)NEE=α×MCU×CUP+β×
(
n−CUP

)
×MCR

(2)
dNEE=

�NEE

�α
dα+

�NEE

�MCU
dMCU+

�NEE

�CUP
dCUP

+
�NEE

�β
dβ+

�NEE

�MCR
dMCR

�NEE

�α
=MCU×CUP

�NEE

�MCU
=α×CUP

�NEE

�CUP
=α×MCU−β×MCR

�NEE

�β
=−MCR×

(
CUP−n

)

�NEE

�MCR
=−β×

(
CUP−n

)

https://daac.ornl.gov/CMS/guides/CMS_CO2_Fluxes_TBMO.html
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�NEE

�α
dα,	 �NEE

�MCU
dMCU,	�NEE

�CUP
dCUP,	�NEE

�β
dβ,	 �NEE

�MCR
dMCR	with	annual	NEE	

anomaly	over	the	period	1980–2013	(Ahlström	et	al.,	2015;	Zhou	
et	al.,	2017).

where i	 refers	 to	 the	year	 from	1980	to	2013;	x	 represents	 the	α,	
MCU,	CUP,	β,	or	MCR,	and	∆NEEi	is	the	annual	NEE	anomaly	based	
on	Equation	(2).	�x	represents	the	relative	contributions	of	the	five	
indicators	to	the	IAV	of	NEE.	In	Equation	(3),	the	positive	sign	reveals	
identical	IAV	of	the	indicator	with	annual	NEE,	and	vice	versa,	and	
the	magnitude	denotes	the	amount	of	the	relative	contribution.

3  | RESULTS

3.1 | Spatial patterns of mean α, MCU, CUP, β, MCR, 
and their IAV

Global	patterns	of	α,	MCU,	CUP,	β,	and	MCR	from	the	eddy	covari‐
ance	observations	and	FLUXCOM	products	were	similar.	Ecosystems	
with	high	mean	negative	NEE	(i.e.,	strong	carbon	sinks)	had	large	α and 
CUP;	for	example,	the	largest	mean	α	(αFLUXCOM	=	0.75,	αsites	=	0.61,	
Figure	2a,b)	and	CUP	(CUPFLUXCOM	=	365.25	days,	αsites	=	365.25	days,	
Figure	1d)	were	found	in	tropical	rainforests;	while	α	and	CUP	average	
about	0.45	(αsites	=	0.44	±	0.08,	αFLUXCOM	=	0.48	±	0.10)	and	180	days	
(CUPsites	=	178	±	68,	CUPFLUXCOM	=	187	±	94	days),	respectively,	in	
boreal	 and	 temperate	 ecosystems	 (Figure	 2b,d).	 Mean	 MCU	 was	
greater	in	forests	(MCUsites	=	−5.73	±	2.52,	MCUFLUXCOM	=	−2.99	±	0.
99	g	C	m−2 day−1)	than	in	other	ecosystems	(MCUsites	=	−5.38	±	3.32,	
MCUFLUXCOM	=	−1.62	±	1.14	g	C	m

−2 day−1,	Figure	2c)	noting	the	con‐
vention	that	net	C	uptake	by	the	land	surface	is	denoted	as	negative.	
Mean β	and	MCR	had	relatively	low	spatial	variability	across	the	globe	
(Figure	2e,f).	Mean	β	 (βsites	=	0.39	±	0.08,	βFLUXCOM	=	0.52	±	0.12,	
Figure	2e)	was	about	0.4	but	MCR	from	FLUXCOM	was	smaller	than	
that	of	tower	observations	(MCRsites	=	2.37	±	1.34,	MCRFLUXCOM = 0.
40	±	0.19	g	C	m−2 day−1,	Figure	2f).

We	found	hot	spots	of	NEE	IAV	in	eastern	and	southern	South	
America,	 eastern	 and	 southern	 Africa,	 Southeast	 Asia,	 Australia,	
central	and	eastern	North	America,	and	Europe	(Figure	2g).	Although	
the	 IAV	 in	α,	MCU,	CUP,	β,	 and	MCR	created	 the	 IAV	of	NEE,	 the	
MCU	and	CUP	had	larger	IAV	than	α,	β,	and	MCR	at	the	global	scale	
(Figure	2h–l).	The	larger	IAV	of	MCU	was	mainly	distributed	in	boreal	
and	temperate	ecosystems	while	the	larger	IAV	of	CUP	was	focused	
on	water‐limited	ecosystems	(Figure	2i,j).

3.2 | Relative	contributions	of	α,	MCU,	CUP,	β,	and	
MCR	to	the	IAV	of	NEE

The	relative	contributions	of	these	five	 indictors	to	the	 IAV	of	NEE	
were	 different	 for	 different	 ecosystems,	 climate	 zones,	 and	 veg‐
etation	 types	 (Figures	 3	 and	 4).	 Eddy	 covariance	 observations	 and	
FLUXCOM	products	consistently	showed	that	the	 IAV	of	MCU	and	

CUP	contributed	more	to	the	IAV	of	NEE	than	that	of	α,	β,	and	MCR	
at	the	global	scale	(Figure	3	and	S2),	especially	across	boreal,	temper‐
ate,	and	tropical	ecosystems	for	the	case	of	MCU	and	water‐limited	
ecosystems	for	the	case	of	CUP	(Figure	3b,c).	The	IAV	of	α	contributed	
nearly	40%	to	the	IAV	of	NEE	in	tropical	forests	(Figure	3a).	The	IAV	
of	MCU	contributed	about	60%	of	 the	 IAV	of	NEE	across	different	
latitude	bands	 (30–60°N,	5°S‐5°N.	 and	40–60°S),	while	 the	 IAV	of	
CUP	played	a	dominant	role	between	10	and	30°S	(40%,	Figure	3f).	
The	contributions	of	α,	MCU.	and	CUP	to	the	IAV	of	NEE	were	roughly	
equal	across	20°N	(Figure	3f)	 in	the	humid	subtropical	climate	zone	
that	still	experiences	seasonality	in	CUP.	The	contributions	of	β and 
MCR	to	the	IAV	of	NEE	were	small	(<10%)	and	relatively	stable	across	
latitudes.

Across	different	vegetation	types,	the	contributions	of	α,	MCU,	
CUP,	 β.	 and	 MCR	 from	 the	 eddy	 covariance	 observations	 and	
FLUXCOM	products	were	similar.	α	contributed	about	40%	of	the	
IAV	of	NEE	in	EBF	(FLUXCOM:	38%,	Sites:	41%,	see	Figure	4	for	a	
list	of	abbreviations),	but	less	than	20%	in	all	other	vegetation	types	
(Figure	4a).	The	contribution	of	MCU	to	the	IAV	of	NEE	in	forests	
(EBF,	DBF,	ENF,	DNF,	FLUXCOM:	60%–67%,	Sites:	40%–50%)	was	
larger	 than	 that	of	nonforests	 (GRA,	SHR,	CRO,	SAV,	FLUXCOM:	
39%–47%,	Sites:	20%–50%).	Conversely,	the	contribution	of	CUP	to	
the	IAV	of	NEE	in	nonforested	ecosystems	(FLUXCOM:	30%–32%,	
Sites:	37%–66%)	contributed	more	than	that	of	forests	(FLUXCOM:	
12%–19%,	 Sites:	 13%–38%,	 Figure	 4).	 The	 contributions	 from	 β 
(<4%)	 and	MCR	 (5%–20%)	 were	 smaller	 and	 less	 variable	 among	
different	vegetation	types	(Figure	4d,e).	In	summary,	CUP	played	a	
dominant	role	in	controlling	the	IAV	of	NEE	in	water‐limited	systems	
(Figure	 5)	while	MCU	 contributed	more	 in	 temperature	 and	 radi‐
ation‐limited	ecosystems	 (i.e.,	energy‐limited	ecosystems;	Nemani	
et	al.,	2003).

3.3 | Model comparison

The	relative	contributions	of	MCU	and	CUP	to	the	IAV	of	NEE	calcu‐
lated	 from	LPJ	 and	MsTMIP	models	mismatched	 that	 of	 FLUXCOM	
observations	 (Figures	 6	 and	 7).	 Results	 from	 LPJ	 showed	 that	 the	
IAV	of	α,	MCU,	CUP,	β,	and	MCR	explained	6%,	29%,	51%,	3%,	and	
12%	the	IAV	of	NEE,	respectively	(Figure	6f–j),	which	were	similar	to	
that	of	the	MsTMIP	models	(9%,	30%,	49%,	2%,	and	9%,	respectively,	
Figure	6k–o),	but	FLUXCOM	observations	found	their	relative	contri‐
butions	to	the	IAV	of	NEE	to	be	14%,	48%,	25%,	2%,	and	8%,	respec‐
tively	(Figure	6a–e).	Although	both	the	LPJ	model	and	MsTMIP	outputs	
showed	MCU	and	CUP	dominated	the	IAV	of	NEE	at	global	scale,	the	
contribution	of	MCU	to	the	IAV	of	NEE	from	land	surface	models	was	
underestimated	 to	about	18%	 (Figure	6b,g,i),	while	 the	contribution	
of	CUP	was	 overestimated	 to	 about	 25%	 (Figure	 6c,h,m).	The	main	
areas	for	the	mismatch	between	land	surface	models	and	observations	
were	in	forest,	rather	than	nonforests	ecosystems	(Figure	7).	Models	
underestimated	the	contribution	of	MCU	in	evergreen	broadleaf	for‐
ests,	 deciduous	 broadleaf	 forests,	 and	 evergreen	 needleleaf	 forests	
(Figure	7a)	while	the	contribution	of	CUP	was	largely	overestimated	in	
these	vegetation	types	(Figure	7b).
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F I G U R E  2  Global	patterns	of	mean	net	ecosystem	CO2	exchange	(NEE),	α,	maximum	carbon	uptake	(MCU),	carbon	uptake	period	(CUP),	
β,	maximum	carbon	release	(MCR),	and	their	interannual	variability	(IAV).	Global	patterns	of	mean	NEE	(a),	α	(b),	MCU	(c),	CUP	(d),	β	(e),	and	
MCR	(f)	using	FLUXCOM	(median	from	three	products,	1980–2013)	and	eddy	covariance	research	sites	(circles).	Global	patterns	of	the	IAV	
of	NEE	(g),	α	(h),	MCU	(i),	CUP	(j),	β	(k),	and	MCR	(l)	using	FLUXCOM	(median	from	three	products).	The	magnitude	of	IAV	(right)	is	defined	as	
standard	deviation	of	annual	value	normalized	by	the	mean	standard	deviation	(values	above	1	indicate	above‐average	IAV)	[Colour	figure	
can	be	viewed	at	wileyonlinelibrary.com]
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4  | DISCUSSION

4.1 | An integrated approach for quantifying the IAV 
of NEE

This	 study	 sheds	 new	 light	 on	 the	 IAV	 of	 terrestrial	 carbon	 ex‐
change	at	global	scale	as	 revealed	by	eddy‐flux	measurements	of	
NEE	 and	 FLUXCOM	NEE	 products.	We	 have	 conceptualized	 the	
seasonal	 pattern	of	NEE	 into	 its	 observed	MCU	and	 release,	 the	
CUP,	 and	 two	 parameters,	α and β,	 that	 describe	 the	 actual	 car‐
bon	 sink	 and	 source	 versus	 hypothetical	 maximum	 carbon	 sink	
and	source	defined	by	other	parameters	(Figure	1).	IAV	in	α,	MCU,	
CUP,	β,	and	MCR	create	the	IAV	of	NEE.	The	new	approach	demon‐
strated	in	this	study	is	suitable	for	all	ecosystems	globally,	including	
dryland,	Mediterranean,	and	tropical	ecosystems.	Xia	et	al.	(2015)	
and	Zhou	et	al.	 (2016)	reported	that	the	decomposing	method	of	
GPP	works	well	for	the	ecosystems	with	distinct	one‐peak	seasonal	

patterns,	however,	its	explanatory	power	is	very	limited	in	dryland,	
Mediterranean,	 and	 tropical	 ecosystems	 that	 not	 exhibit	 a	 single	
seasonal	C	uptake	signal.	Our	study	complements	this	knowledge	
gap	and	provides	new	insight	into	the	IAV	of	NEE	globally.

The	 IAV	 of	 NEE	 is	 explained	 by	 indicators	 that	 are	 related	 to	
underlying	 biological	 processes,	 for	 example,	 physiology	 and	phe‐
nology,	which	can	help	diagnose	causes	of	its	interannual	variation.	
Controls	of	 IAV	of	NEE	are	complex	because	NEE	 is	comprised	of	
two	separate	fluxes,	GPP	and	ER,	driven	by	different	factors	includ‐
ing	light,	temperature,	soil	moisture,	and	leaf	area	index,	whose	im‐
pact	and	control	will	differ	by	ecosystem,	climate	space,	season,	and	
more	(Baldocchi,	Chu,	&	Reichstein,	2018;	Baldocchi,	Ryu,	&	Keenan,	
2016;	Zeng,	Mariotti,	&	Wetzel,	2005).	These	five	indicators	related	
to	phenology	and	physiology	provide	a	simple	way	to	track	the	vari‐
ations	of	NEE.	Environmental	drivers	may	ultimately	cause	the	IAV	
of	NEE	by	regulating	these	phenological	and	physiological	indicators	

F I G U R E  3  The	relative	contributions	of	(a)	α,	(b)	MCU,	(c)	CUP,	(d)	β,	and	(e)	MCR	to	the	interannual	variability	of	net	ecosystem	CO2 
exchange	(NEE)	and	their	latitudinal	patterns	(±standard	error,	f)	using	the	median	of	three	FLUXCOM	products	and	eddy	covariance	
research	sites	(circles).	The	same	results	using	a	variance	decomposition	method	are	presented	in	Figure	S2		[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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(Fu,	 Stoy,	 et	 al.,	 2017;	 Niu	 et	 al.,	 2017).	 Thus,	 understanding	 the	
relationships	between	climate	and	 these	phenological	 and	physio‐
logical	indicators	could	reveal	fundamental	mechanisms	underlying	
IAV	of	NEE	and	be	useful	 for	better	predicting	annual	NEE	under	
global	 change.	Additionally,	we	 found	 that	mean	α	 increased	 from	
boreal	and	temperate	ecosystems	(0.4)	to	tropical	ecosystems	(0.75),	
which	is	critical	for	understanding	global	patterns	of	NEE	because	α 
characterizes	the	capacity	of	terrestrial	ecosystem	productivity	and	
shapes	 the	seasonality	of	NEE.	 If	 the	daily	NEE	always	equals	 the	
MCU	during	the	growing	season,	the	α	will	be	equal	to	1.	But	this	
never	happens	because	the	environmental	conditions	are	changing	
and	are	not	always	ideal.	In	this	way,	α	reflects	how	much	C	uptake	
is	constrained	by	environmental	drivers	during	the	growing	season.

Mean	MCU	and	MCR	from	FLUXCOM	were	lower	than	that	observed	
at	the	site	level,	due	in	part	to	the	spatial	averaging	of	the	MCU	and	MCR	
by	FLUXCOM	that	dampens	 their	mean	values	and	uncertainties	 that	

arise	 from	the	upscaling	method	 (Jung	et	al.,	2011;	Tramontana	et	al.,	
2016).	It	has	to	be	considered	that	the	FLUXCOM	product	is	driven	by	
data	from	flux	networks	that	are	limited	in	some	areas	(e.g.,	the	tropics	
and	the	Southern	Hemisphere);	therefore,	these	observation‐driven	esti‐
mates	are	underconstrained	in	those	areas.	A	second	reason	for	the	dis‐
crepancy	could	be	the	difference	of	studied	period,	which	is	from	1980	
to	2013	for	FLUXCOM,	while	site	observations	only	cover	5–15	years.

4.2 | Dominant role of MCU in contributing to the 
IAV of NEE

This	 study	 establishes	 that	 the	 IAV	 of	 global	 NEE	 is	 largely	 ex‐
plained	 by	 the	 physiological	 (MCU)	 and	 phenological	 indicators	
(CUP),	 especially	 the	 former.	 Perhaps	 surprisingly,	α	 controls	 only	
about	10%	of	the	IAV	in	NEE	in	the	temperate	and	boreal	zones.	In	
other	words,	the	ratio	of	actual	to	hypothetical	maximum	C	sink	is	
less	variable	than	the	size	of	the	“box”	described	by	CUP	and	MCU	
that	defines	it.	The	small	contributions	of	β	and	MCR	to	the	IAV	of	
NEE	are	fairly	constant	across	the	globe,	indicating	that	the	IAV	of	
NEE	 is	 driven	 by	 the	 net	 CO2	 uptake	 during	 the	 growing	 season,	
rather	than	net	CO2	release	during	the	nongrowing	season.	A	small	
relative	change	in	MCU	is	often	indicative	of	substantial	changes	in	
peak	NEE	and	thus	annual	net	C	uptake	(Fu,	Dong,	et	al.,	2017;	Fu,	
Stoy,	et	al.,	2017;	Zscheischler	et	al.,	2016).	The	 important	role	of	
MCU	to	NEE	also	has	been	recognized	in	a	number	of	recent	studies	
on	changes	to	the	terrestrial	carbon	cycle	(Gonsamo,	Chen,	&	Ooi,	
2018;	Reichstein,	Bahn,	Mahecha,	Kattge,	&	Baldocchi,	2014;	Zhou	
et	al.,	2017;	Zscheischler	et	al.,	2016).	Specifically,	the	numbers	of	
occurrences	of	high	values	in	observed	daily	ecosystem	fluxes	are	
strongly	 correlated	with	 their	 annual	 sums,	while	 the	 influence	of	
phenological	 transitions	 has	 less	 importance	 (Zscheischler	 et	 al.,	
2016).	It	was	also	well	documented	that	annual	NEE	correlates	well	
with	the	maximum	light	saturated	GPP	at	seven	European	long‐term	
observation	sites	 (Reichstein	et	al.,	2014).	Here,	we	demonstrated	
that	MCU	also	dominates	the	IAV	of	NEE	at	global	scale,	especially	
in	temperature‐	and	radiation‐limited	ecosystems	(Figure	5).	These	
results	suggest	that	variations	of	CO2	uptake	during	the	peak	grow‐
ing	 season	 are	 critical	 in	 determining	 the	 interannual	 variation	 of	
ecosystem	C	cycle	and	its	responses	to	the	changing	climate.

Not	only	does	MCU	dominate	the	IAV	of	NEE	at	the	global	scale,	
but	there	is	also	an	increasing	trend	in	MCU	which	contributes	to	the	
increasing	trend	in	C	sink	strength	(Fu,	Dong,	et	al.,	2017).	Gonsamo	
et	al.	 (2018)	reported	that	the	peak	season	plant	activity	(peak	max‐
imum	NDVI	value)	 increased	by	7.8%	 for	1982–2015,	which	 further	
highlights	the	importance	of	MCU	in	contributing	the	land	C	sink.	The	
increasing	 trends	 in	 summertime	 C	 uptake	 in	 northern	 ecosystems	
(Graven	et	al.,	2013)	have	been	attributed	to	increasing	leaf	area	and	
plant	biomass	(Myneni,	Keeling,	Tucker,	Asrar,	&	Nemani,	1997;	Pan	et	
al.,	2011),	increasing	coverage	of	evergreen	shrubs	and	trees	(Walther	
et	al.,	2002),	and	shifting	the	age	composition	toward	fast	growing	veg‐
etation	after	disturbances	that	have	more	intense	seasonal	C	uptake	
(Soja	et	al.,	2007),	all	suggesting	ongoing	changes	in	MCU	that	must	
be	further	studied	to	understand	the	variability	of	the	global	C	cycle.

F I G U R E  4  Mean	contributions	(±standard	deviation)	of	(a)	α,	
(b)	MCU,	(c)	CUP,	(d)	β,	and	(e)	MCR	to	the	interannual	variability	
of	net	ecosystem	CO2	exchange	using	FLUXCOM	and	tower	sites	
across	different	vegetation	types.	CRO,	croplands;	DBF,	deciduous	
broadleaf	forests;	DNF,	deciduous	needleleaf	forests;	EBF,	
evergreen	broadleaf	forests;	ENF,	evergreen	needleleaf	forests;	
GRA,	grasslands;	SAV,	savannas;	SHR,	shrublands	[Colour	figure	
can	be	viewed	at	wileyonlinelibrary.com]
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F I G U R E  5  Frequency	distributions	
of	the	contribution	of	CUP	(a)	and	
MCU	(b)	to	the	interannual	variability	
of	net	ecosystem	CO2	exchange	
across	global	regions	in	which	the	net	
primary	productivity	is	limited	by	water,	
temperature,	or	radiation	[Colour	figure	
can	be	viewed	at	wileyonlinelibrary.com]
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F I G U R E  6  The	relative	contributions	of	α,	maximum	carbon	uptake	(MCU),	carbon	uptake	period	(CUP),	β,	maximum	carbon	release	
(MCR)	to	the	interannual	variability	of	net	ecosystem	CO2	exchange	using	FLUXCOM	(a–e),	Lund‐Potsdam‐Jena	(LPJ)	(f–j),	Multi‐scale	
Synthesis	and	Terrestrial	Model	Inter‐comparison	Project	(MsTMIP)	models	(k–o),	and	eddy	covariance	research	sites	(circles)	[Colour	figure	
can	be	viewed	at	wileyonlinelibrary.com]
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In	water‐limited	ecosystems,	however,	we	found	that	CUP	played	
an	important	role	in	contributing	to	the	IAV	of	NEE.	In	water‐limited	
ecosystems,	changes	in	CUP—often	due	to	precipitation	events—may	
appreciably	change	annual	C	uptake	 (Ahlström	et	al.,	2015;	Poulter	
et	 al.,	 2014).	 Although	 the	 length	 of	 CUP	 in	water‐limited	 ecosys‐
tems	 is	 shorter	 than	 that	of	 temperature‐	or	 radiation‐limited	eco‐
systems	 (Figure	 2d),	 the	 IAV	 of	 CUP	 in	 water‐limited	 ecosystems	
is	 larger	 (Figure	2j),	 and	dominates	 the	 IAV	of	NEE.	Plants	 living	 in	
water‐limited	areas	often	opportunistically	respond	to	rainfall	events,	
which	 thereby	 determine	 productivity	 (Tang,	 Arnone	 Iii,	 Verburg,	
Jasoni,	&	Sun,	2015).	Many	recent	studies	have	advanced	our	knowl‐
edge	of	how	ecosystem	phenology—and	thereby	CUP—influences	the	
terrestrial	ecosystem	C	cycle	(Buermann	et	al.,	2018;	Churkina	et	al.,	
2005;	Piao,	Friedlingstein,	Ciais,	Viovy,	&	Demarty,	2007;	Richardson	
et	al.,	2013),	and	our	results	further	emphasize	its	importance	for	un‐
derstanding	the	IAV	of	NEE	in	water‐limited	ecosystems.

4.3 | Land surface models cannot capture the 
contributions of MCU and CUP

Compared	with	the	relative	contributions	of	MCU	and	CUP	to	the	
IAV	 of	 NEE	 calculated	 from	 FLUXCOM,	 both	 the	 LPJ	 model	 and	
MsTMIP	models	underestimated	the	contribution	of	MCU	to	the	IAV	

of	NEE	and	overestimated	 the	contribution	of	CUP.	The	main	areas	
for	the	mismatch	between	land	surface	models	and	observations	were	
in	forests,	rather	than	nonforests	ecosystems	(Figures	6	and	7).	The	
mean	and	IAV	of	the	MCU	in	forests	are	larger	than	that	of	nonfor‐
ests	ecosystems,	 and	 the	 land	surface	models	do	not	 capture	 this	
large	 IAV	of	MCU	 in	 forests,	 leading	 to	 the	underestimation	of	 its	
contribution	to	the	IAV	of	NEE.	Our	results	suggested	that	future	re‐
search	needs	to	improve	the	simulating	capability	of	MCU,	especially	
in	forests,	 for	 land	surface	models.	 In	addition	to	model	structure,	
particular	attention	to	the	meteorological	data	being	used	and	how	
this	affects	uncertainty	in	daily	fluxes	should	be	further	investigated.

The	underestimation	of	MCU’s	contribution	to	the	IAV	of	NEE	
in	land	surface	models	might	be	caused	by	an	underestimation	of	
the	maximum	leaf	area	index,	plant	photosynthetic	capacity,	and/
or	missing	representation	of	agricultural	management.	Many	land	
surface	models	 underestimate	 the	maximum	 leaf	 area	 index,	 es‐
pecially	 in	 the	 high	 latitudes	 (Winkler,	 Myneni,	 Alexandrov,	 &	
Brovkin,	2019),	which	leads	to	an	underestimation	of	GPP.	Huang	
et	al.	(2018)	also	reported	the	uncertainty	of	simulating	the	plant	
photosynthetic	capacity	in	land	surface	models.	For	example,	the	
control	 of	 leaf	 nitrogen	 concentrations	 and	 environmental	 vari‐
ables	 (e.g.,	 temperature,	 radiation,	 day	 length,	 and	 humidity)	 are	
conventionally	 assumed	 to	be	 constant	 for	 each	plant	 functional	
type	or	 to	 vary	 linearly	with	 leaf	nitrogen	 concentrations	 in	 cur‐
rent	 terrestrial	 biosphere	 models,	 when	 modeling	 plant	 photo‐
synthetic	capacity	 (e.g.,	Vcmax;	Ali	et	al.,	2015).	Moreover,	models	
differ	in	the	design	of	crop	types	and	the	ways	in	which	they	deal	
with	 crop	 and	 agricultural	 management.	 MsTMIP	 models	 might	
underestimate	 the	 contribution	 of	 agricultural	 activities	 to	 the	
MCU,	because	most	models	do	not	explicitly	represent	crops	and	
agricultural	management	(Huang	et	al.,	2018;	Thomas	et	al.,	2016).	
In	addition,	most	models	underestimate	the	magnitude	of	hetero‐
trophic	 respiration	 (Liu	 et	 al.,	 2018).	 It	 is	 difficult	 to	 capture	 the	
complexity	of	heterotrophic	respiration	(e.g.,	microbial	responses;	
Mäkiranta	et	al.,	2009),	which	impacts	ecosystem	respiration	and	
thus	on	MCU	and	CUP.	Dynamic	Global	Vegetation	models	have	
routinely	 incorporated	 temperature	 and	moisture	 constraints	 on	
heterotrophic	respiration,	but	the	effects	of	moisture	on	decom‐
position	rate	are	much	more	uncertain	than	temperature	 (Koven,	
Hugelius,	Lawrence,	&	Wieder,	2017;	Sierra,	Trumbore,	Davidson,	
Vicca,	&	Janssens,	2015).

4.4 | Implications of MCU and CUP under 
changing climate

The	predominant	role	of	peak	growing	season	physiology	in	caus‐
ing	the	IAV	in	the	terrestrial	carbon	cycle	has	important	 implica‐
tions	for	understanding	the	global	C	cycle	in	response	to	climate	
change.	Because	climate	change	likely	results	in	an	increased	fre‐
quency	 and	 intensity	 of	 summer	 drought	 and	 heat	 waves	 (Ciais	
et	al.,	2005;	Hall,	Qu,	&	Neelin,	2008;	Sheffield	&	Wood,	2008),	
future	 changes	 in	 growing	 season	 climate	may	 cause	 substantial	
changes	in	C	cycling	by	impacting	the	CO2	uptake	capacity	at	peak	

F I G U R E  7  Mean	contributions	(±standard	deviation)	of	the	
interannual	variability	(IAV)	of	maximum	carbon	uptake	(MCU,	 
a)	and	carbon	uptake	period	(CUP,	b)	to	the	IAV	of	net	ecosystem	
CO2	exchange	using	FLUXCOM	observations,	Lund‐Potsdam‐Jena	
(LPJ),	and	Multi‐scale	Synthesis	and	Terrestrial	Model	Inter‐comparison	
Project	(MsTMIP)	outputs	across	different	vegetation	types.	CRO,	
croplands;	DBF,	deciduous	broadleaf	forests;	DNF,	deciduous	
needleleaf	forests;	EBF,	evergreen	broadleaf	forests;	ENF,	evergreen	
needleleaf	forests;	GRA,	grasslands;	SAV,	savannas;	SHR,	shrublands
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growing	season,	which	would	 lead	to	 larger	IAV	in	the	terrestrial	
C	 cycle	 and	 atmospheric	 CO2	 growth	 rates.	 To	 better	 simulate	
land	CO2	exchange	under	changing	climate,	it	is	urgent	for	global	
models	to	realistically	represent	physiological	processes	that	de‐
termine	peak	growing	season	ecosystem	function.	The	 latter	are	
highly	dynamic	and	may	require	dynamic	instead	of	fixed	param‐
eter	 values	 for	 the	maximum	 rate	 of	 carboxylation	 in	models	 to	
accurately	 simulate	 the	 variability	 of	MCU	 (Li	 et	 al.,	 2016;	Xiao,	
Davis,	Urban,	&	Keller,	2014).

Previous	work	on	the	IAV	of	NEE	mostly	has	focused	on	the	
ultimate	 causes	 of	 climate	 impacts	 (Jung	 et	 al.,	 2017;	 Poulter	
et	al.,	2014;	Wang	et	al.,	2014;	Zeng	et	al.,	2005).	Climate	causes	
the	 IAV	of	NEE	 largely	 through	 its	 influence	on	MCU	and	CUP.	
Numerous	studies	have	attributed	the	IAV	of	terrestrial	C	cycle	
to	 different	 climate	 factors	 with	 generally	 conflicting	 results	
(Kindermann,	Würth,	Kohlmaier,	&	Badeck,	1996;	Schaefer	et	al.,	
2002;	Zeng	et	al.,	2005),	and	few	have	explicitly	examined	how	
climate	factors	impact	the	fundamental	processes	of	terrestrial	C	
cycle	and	consequently	cause	the	IAV	of	C	uptake.	As	revealed	in	
this	study,	the	processes	underlying	the	IAV	in	NEE	are	primarily	
physiological	and	phenological,	which	are	associated	with	MCU	
and	CUP,	both	of	which	are	regulated	by	changes	in	environmen‐
tal	 factors,	 but	 in	 different	ways.	 If	 these	 climate	 factors	 have	
compensatory	effects	on	MCU	and	CUP,	they	will	lead	to	negligi‐
ble	impacts	on	annual	NEE	(Buermann	et	al.,	2018;	Fu,	Stoy,	et	al.,	
2017;	Wolf	 et	 al.,	 2016).	 For	 example,	 a	warmer	 spring	 usually	
induces	a	 longer	growing	season	and	thus	results	 in	higher	pro‐
duction.	 But	 a	 subsequent	warmer	 and	 drier	 summer	may	 sup‐
press	 summer	production,	potentially	offsetting	 the	 increase	 in	
terrestrial	ecosystem	production	 that	 is	expected	with	a	 longer	
growing	 season	 (Angert	 et	 al.,	 2005;	 Cleland,	 Chuine,	 Menzel,	
Mooney,	&	Schwartz,	2007).	Namely,	in	some	ecosystems,	early	
spring	and	longer	growing	seasons	may	decrease	annual	GPP	or	
NEE	because	 the	 earlier	 onset	 of	 growing	 season	may	 increase	
transpiration,	 leaving	 less	 available	water	 in	 the	 soil	 in	 summer	
and	limiting	plant	growth	later	in	the	growing	season	(Kljun	et	al.,	
2006;	Wolf	et	al.,	2016).	Such	offsetting	and	compensatory	 im‐
pacts	of	climate	 factors	could	be	 reasons	why	different	studies	
in	 the	 past	 have	 generated	 contradictory	 or	 conflicting	 results	
on	the	causes	of	the	IAV	in	terrestrial	C	fluxes	and	atmospheric	
CO2	growth	rate.	Future	research	needs	to	pay	more	attention	to	
the	different	effects	of	climate	anomalies	on	the	MCU	and	CUP	
for	a	better	understanding	of	the	IAV	of	NEE	globally,	as	well	as	
exploring	how	elevated	atmospheric	CO2	interacts	with	leaf	and	
canopy	processes.

In	summary,	this	study	demonstrated	a	universal	approach	for	
integrating	phenology	and	physiology	globally	and	sheds	new	light	
on	explaining	IAV	in	terrestrial	carbon	exchange	at	global	scale.	It	
suggests	that	the	IAV	in	terrestrial	NEE	can	be	understood	by	de‐
composing	 it	 into	proximate	 causes	of	C	uptake	using	metrics	 of	
phenology	 and	physiology.	 The	 IAV	of	NEE	was	determined	pre‐
dominately	by	variability	in	the	MCU	at	the	global	scale,	which	ex‐
plained	48%	of	the	IAV	of	NEE	on	average.	CUP	played	an	important	

role	in	contributing	to	the	IAV	of	NEE	in	water‐limited	ecosystems	
while	MCU	dominated	 the	 IAV	of	NEE	 in	 temperature‐	 and	 radi‐
ation‐limited	 ecosystems.	 The	 LPJ	 model	 and	 the	MsTMIP	 mod‐
els	underestimate	the	contribution	of	MCU	to	the	 IAV	of	NEE	by	
about	18%	on	average,	and	overestimate	the	contribution	of	CUP	
by	about	25%.	The	major	 role	of	MCU	 in	determining	 the	 IAV	 in	
NEE	is	supported	by	recent	advances	in	terms	of	the	global	increase	
of	 seasonal	 amplitude	of	 atmosphere	CO2	 concentration	 (Graven	
et	al.,	2013),	increasing	greenness	in	northern	ecosystems	(Myneni	
et	 al.,	 1997),	 and	 increasing	 trends	 in	 annual	CO2	 uptake	 in	 tem‐
perate	and	boreal	areas	(Keenan	et	al.,	2014).	This	study	provides	a	
new	perspective	on	the	proximate	causes	of	the	IAV	in	NEE,	which	
may	 explain	 the	 different	 results	 in	 previous	 studies	 on	 the	 ulti‐
mate	causes	of	IAV	in	the	C	cycle	(Kindermann	et	al.,	1996;	Poulter	
et	al.,	2014;	Schaefer	et	al.,	2002;	Wang	et	al.,	2014;	Zeng	et	al.,	
2005).	The	mechanisms	underlying	the	IAV	in	the	terrestrial	C	cycle	
through	changes	in	CO2	uptake	amplitude	and	period	is	of	critical	
importance	for	improving	our	ability	to	project	future	change	in	the	
earth	system.
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